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Abstract: Sharding, breaking nodes into smaller groups, aims to enhance the scalability of
traditional blockchain systems by allowing parallel transaction processing. However, existing
sharding methods face challenges, including heavy inter-shard communication, re-sharding
overhead, and low consensus concurrency. These limitations ultimately result in less desired
system performance. To address these challenges, we propose Frustum, a novel hierarchical
and pipelined sharding blockchain system. It separates shards into two layers: top L-Shard and
base F-Shards. In each round, a global leader is elected from L-Shard and broadcasts a new
block to F-Shard nodes, negating the need for final committee confirmation and simplifying the
consensus process. Additionally, Frustum adopts a random re-sharding mechanism to mitigate
the re-sharding overhead issue. Finally, Frustum employs a pipelined structure for enhanced
consensus concurrency. Our Frustum prototype demonstrates a substantial performance boost,
improving transaction throughput by 2.79 and 1.68 times over existing sharding systems with
16 shards and 1024 nodes.
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1. Introduction

Blockchain technology has gained widespread adoption in a variety of fields such as digital
cryptocurrency [1], information security, and the Internet of Things [2] due to its inherent
features of decentralization, data transparency, and security [3]. However, in order to achieve
a high level of security in a large-scale decentralized environment, blockchain technology
often suffers from poor transaction throughput and latency [4]. This is because blockchain
consensus protocols require all nodes to verify and store all transactions, and every consensus
message must be broadcast across the entire blockchain network (see Figure 1a). For instance,
Bitcoin [1], one of the most popular blockchain system, takes an average of 10 minutes to
produce a block [5], which is far from sufficient for a practical financial system.

Sharding is considered a promising scheme to improve blockchain systems’ performance
in terms of transaction throughput and latency [6]. It partitions the blockchain network into
smaller shards. Each shard hosts a subset of the overall network, independently processes
transactions and maintains its own copy of the blockchain ledger. The key benefit of sharding
lies in its ability to improve the scalability and performance of the blockchain network by
reducing the computational and storage demands associated with transaction validation [7].

Full sharding and Partial sharding are two state-of-the-art approaches for blockchain
sharding. Full sharding (see Figure 1b), like OmniLedger [8] and RapidChain [9], divides
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the nodes into multiple isolated shards, each with a distinct blockchain for the transactions
that it processes. The nodes within a shard are responsible for the consensus of transactions
submitted to this shard, including verification, storage and communication. Intrinsically,
full sharding reduces the number of nodes involved in a transaction, thereby improving the
intra-shard transaction performance. However, it needs to process several sub-transactions
per cross-shard transaction, since it divides original cross-shard transactions into multiple
sub-transactions, which seriously degrades the cross-shard performance in terms of throughput
and confirmation latency. To this end, partial sharding (see Figure 1c) is proposed to mitigate
the cross-shard transaction issue. It distributes the transactions to different shards and each
shard maintains a globally consistent blockchain so that there are no cross-shard transactions
in the system, such as Elastico [10] and Zilliqa [11].

(a) No sharding (b) Full sharding (c) Partial sharding

Figure 1. Illustration for different sharding blockchain systems.

Existing partial sharding suffers from burdensome inter-shard communication, heavy
re-sharding overhead and low consensus concurrency. First, a block produced by a shard
should be synchronized with all nodes in other shards to maintain a single chain. The inter-
shard communication increases with the number of nodes and transactions. We find that the
communication latency may become the bottleneck. Second, partial sharding also requires
frequent re-sharding to improve the system’s ability to resist Byzantine attacks [12]. Nodes in
a blockchain system may act maliciously and try to undermine the security and correctness of
the network, leading to system failure or data tampering. If the number of malicious nodes in
a shard exceeds 1/3, the attack will be successful. Therefore, frequent re-sharding can prevent
the attacker from gaining knowledge of a shard’s composition, thus resisting attacks. However,
re-sharding requires complex node verification through solving the PoW problem [13], which
introduces significant computing latency. Our measurement study on Elasticso [10] shows that
the re-sharding latency can reach up to 94.03% of the total epoch time (see Section 2.3. for
details). Third, in each epoch, shard formation, shard overlay setup, intra-shard consensus,
final consensus broadcast, and epoch randomness generation proceed sequentially. The low
concurrency of the consensus process severely hinders the throughput performance, leaving
an opportunity for parallelism.

Aiming at the above issues in partial sharding, we propose Frustum, a novel hierarchical
and pipelined sharding blockchain system. We reduce inter-shard communication by designing
a hierarchical sharding architecture whose shape resembles a frustum. The bottom circular
base consists of Foundation shards (F-Shard). In each F-Shard, a node is selected as leader to
coordinate intra-shard consensus and block committing. The top circular base is the leader
shard (L-Shard), consisting of all F-shard leaders. Inter-shard communication is confined
among L-Shard nodes, which significantly reduces the number of participating nodes and
alleviates communication pressure.

We propose a random re-sharding mechanism to mitigate the overhead of frequent re-
sharding. While re-sharding every epoch lowers the attacker’s probability of detecting the
shard composition, randomly selecting timings for re-sharding increases the indeterminacy
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and achieves the similar effect with low overhead.
In our research, we have developed a complete pipelined consensus protocol with the

objective of increasing consensus concurrency. In contrast to the conventional sequential
consensus approaches, our protocol employs a pipelining strategy, which allows for the
concurrent execution of different stages from sequential epochs.

Through a systematic investigation, proper consensus stages for pipelining are identified.
Accordingly, we have introduced a fine-grained pipelining transaction processing protocol,
which significantly improves throughput and efficiency in blockchain systems. Our research
findings and the proposed protocol play a significant role in advancing the field of blockchain
technology, addressing vital concerns related to performance and scalability.

We also design a complete pipelined consensus protocol to increase concurrency. Unlike
existing sequential blockchain consensus algorithms, Frustum orchestrates the consensus
process in a pipelining way, which allows for overlapping of the different stages of sequential
epochs. We investigate which stages can be executed concurrently, and proposed a fine-
granularity pipelining transaction processing protocol.

Finally, based on PBFT [12], a standard byzantine [14] agreement protocol, we implement
a prototype of Frustum and evaluate its performance. Experiments show that Frustum can
process more than 4600 tx/sec in a network with 16 shards, which improves the transaction
throughput by 2.79 × and 1.68 × compared to the state-of-the-art sharding systems.

The rest of this paper is organized as follows. Section 2 introduces the background and
motivation. Section 3 provides the details of the Frustum design. Section 4 gives the system
analysis for Frustum. Section 5 evaluates the performance of Frustum compared with other
sharding blockchain systems by experiments. Section 6 presents the related work. Finally,
Section 7 concludes this article.

2. Background and motivation

This section first introduces the concepts of blockchain systems, which have attracted extensive
attention from the industry and academia. Then we present a measurement study and workflow
analysis of a typical state-of-the-art partial sharding blockchain system Elastico [10].

2.1. Background on blockchain systems

Blockchain is a distributed storage technology in which data are stored in the form of
blocks [15]. Each block is divided into a block header and a block body. A block header
records the birth date of the block, the hash digest of the previous block, the hash digest of
this block, and other ancillary information [16]. A block body holds the specific transactions
which consist of digital currency transactions between different accounts that are anonymous
strings of characters in Bitcoin [17].

Each node participating in the blockchain system keeps an identical copy of the blockchain
data and always synchronizes the new blocks generated by miners to ensure the consistency
of data. In traditional blockchain systems, particularly those utilizing Proof of Work (PoW),
miners are required to consume a significant amount of computational power in order to
compete for the privilege of adding a new block to the chain [18]. However, modern consensus
mechanisms, such as Proof of Stake (PoS), Delegated Proof of Stake (DPoS), and others,
provide alternative approaches that do not necessitate this intensive utilization of computational
resources [19, 20]. In PoS-based systems, for example, the authority to validate transactions
and generate new blocks is determined by one’s stake in the network, resulting in significantly
reduced energy consumption and expedited transaction validation [19]. Miners who mine a
new block will get a block reward. Miners who lose the competition will continue to mine
on top of the new block, thus continuing to form newer blocks and the blockchain keeps
growing [21]. Processing a block can be divided into four steps, as shown in Figure 2.
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Figure 2. Four-stage processing of general blockchain consensus.

Leader Election: Each block is mined by a miner, and the blockchain system needs a
method of filtering miners to elect a unique leader to take on the job of generating new blocks.
In consensus mechanisms such as Practical Byzantine Fault Tolerance (PBFT) [22] and
Delegated Proof of Stake (DPoS), the leader election is an explicit phase where nodes select a
leader through a designated process. In Proof of Stake (PoS) mechanisms, the election is often
influenced by factors such as the stake’s size and duration held by the nodes. Conversely, in
Proof of Work (PoW), the leader emerges implicitly by solving cryptographic puzzles, with
any miner capable of becoming a leader upon successfully completing such a puzzle.

Block Generation: The winning node in the previous Leader Election phase, called
the leader, takes on the job of packaging transactions to generate a new block. The leader
maintains a transaction pool, which holds transactions that have been verified as legitimate,
waiting for being packed into a new block according to certain rules. These transactions are
sent directly to the leader by clients (also known as wallets [23]) or routed from other nodes.
This phase, which involves the elected leader packaging transactions to create a new block,
is common in PoS, DPoS and PBFT mechanisms. Particularly, block generation in PoW is
tightly coupled with leader election, occurring simultaneously as the computational puzzle is
solved.

Message Broadcast: After generated, a new block needs to be confirmed by a majority
of the consensus members. Therefore, the leader broadcasts the new block to the other
consensus members in the network. In PBFT, PoS, and DPoS, this involves a series of
protocol communications to reach an agreement on the block. In PoW, the process is relatively
straightforward as the new block is disseminated through the network and validated.

Block Finality: When the leader and most other nodes reach consensus on the new
block, they add the new block to the blockchain, which means that the transactions in the new
block are actually submitted in success. In PBFT, PoS, and DPoS, when a majority of nodes
reach a consensus on the new block, it is appended to the blockchain, signifying the ultimate
commitment of the transactions within. In PoW, finality is typically achieved when the block
receives a sufficient number of confirmations through successive block additions to the chain.

Blockchain systems generally cycle through the above four steps, with new blocks con-
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stantly being submitted and blockchain data growing.

2.2. A measurement study on Elastico

Elastico [10] is a partial blockchain sharding technique that aims to provide high scalability
and low latency for blockchains. In this section, we conduct a performance measurement study
on Elastico to investigate the impact of inter-shard communication and re-sharding.

Measurement setup. We implement Elastico system and calculate the inter-shard com-
munication overhead and the ratio of time taken for re-shard in one epoch. For the transaction
dataset, we use a real blockchain transaction trace, which is extracted from XBlock-ETH [24].
We randomly divide the original dataset into three parts, named Dataset 1, Dataset 2 and
Dataset 3. We evaluate the Elastico system on a workstation with 20 CPU cores (@3.7GHz)
and 125GB memory.

The impact of inter-shard communication. Table 1 shows the number of inter-shard
messages per node and the bandwidth used per node. In different network sizes, the number of
messages per node exceeds 1000, and the bandwidth consumed at each node fluctuates around
5 MB per node. Such communication overhead will seriously affect the system performance.

The impact of re-sharding. Figure 3 shows the Cumulative Distribution Function (CDF)
of re-sharding latency over three datasets. We can observe that the re-sharding latency severely
degrades the system performance in terms of transaction latency. For instance, only 22.62%,
23.15%, and 51.07% of the re-sharding latency ratios of Dataset 1, Dataset 2, and Dataset 3
are smaller than 20% of the total epoch time. More than 39.75%, 39.32%, and 17.77% of the
re-sharding latency ratios of Dataset 1, Dataset 2 and Dataset 3 are greater than 50% of the
total epoch time.

Table 1. Measurement results of inter-shard communication.

Network Size Messages per Node Bandwidth Consumption
100 2500 5.07 MB
200 1879 4.99 MB
400 1508 4.93 MB
800 1479 5.14 MB

1000 1463 5.10 MB
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Figure 3. The CDF of re-sharding latency.
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We can also see that re-sharding becomes the system bottleneck for part of epochs. For
example, the maximum ratios between the re-sharding latency and the total epoch time are
93.47%, 94.03%, and 92.22% over three Dataset 1, Dataset 2, and Dataset 3, respectively.

2.3. An analysis study on Elastico

In this section, we analyze the consensus flow of Elastico, which motivates us to improve the
concurrency of the partial sharding blockchain system.

As shown in Figure 4, the workflow of Elastico is as follows: 1) Identity Establishment
and Committee Formation, each node chooses a local identity information group (IP, PK)
which represents their IP address and public key [25] respectively. In order for the system
to recognize their identity, each node needs to find a PoW solution that is related to the
epochRandomness and node identity information. The epochRandomness will be generated
in the last step of the previous epoch. After establishing their identity, the system divides
nodes into 2s committees by the last s bits of their node ID; 2) Overlay Setup for Committees,
the first c nodes that establish identity and join the system form the directory committee. All
nodes establish peer-to-peer connections with other nodes belonging to the same committee
by contacting the directory committee; 3) Intra-Committees Consensus, transactions are
assigned to a specific committee based on certain rules, and then the committee runs the PBFT
consensus algorithm internally. If the transaction is validated, all nodes within the committee
sign the transaction; 4) Final Consensus Broadcast, a final committee is randomly selected
in the system, which then verifies that a transaction has been signed by more than half of
the members of the corresponding committee. After successful validation, the transaction is
packaged into a block and added to the blockchain; 5) Epoch Randomness Generation, the final
committee will generate an epochRandomness, which will be used for identity establishment
in the next epoch.

Time

Epoch

1

2

3

Identity 
Establishment 
and Committee 

Formation

Overlay 
Setup for 

Committees

Intra-
Committees
Consensus

Final 
Consensus
Broadcast

Epoch 
Randomness
Generation

Figure 4. Consensus flow of Elastico.

Elastico performs the above steps in a serial manner within each epoch as well as between
each epoch. Specifically, within each epoch, Elastico executes the five steps sequentially; only
when the five steps of the current epoch are completed can the five steps of the next epoch
be executed. However, this serial execution method has low parallelism, providing us with
an opportunity to increase parallelism and improve the overall transaction throughput of the
system. For instance, we can start the next round of Identity Establishment and Committee
Formation right after finishing the same step of the current epoch.

3. Frustum design

This section makes assumptions about the security of the system and presents the system
model of Frustum. Then the details of the Frustum random re-sharding mechanism and
consensus protocol are elaborated, including the complete process of transaction handling
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from submission to finalization into the blockchain.

3.1. Problem definition

Frustum system seeks to address the scalability and energy efficiency challenges prevalent
in traditional blockchain consensus mechanisms like Proof of Work. Specifically, the system
is designed to enable a higher transaction throughput without exponentially increasing the
computational power required for consensus. Frustum is defined by its inputs, outputs, and the
hierarchical structure of nodes and shards.

The system operates on a set of inputs comprising transaction requests, denoted as Treq =
{t1, t2, ..., tk}, where each ti represents a digitally signed transaction request, and inter-node
messages, represented as M = {m1,m2, ...,m j}, which are used for transaction verification
and consensus. The outputs of the system include a block of validated transactions, Bval =
{tv1, tv2, ..., tvm}, and an updated system state, represented as Sysnew = Sysold⊕Bval, where ⊕
denotes the state update operation.

We define the system’s nodes and their organization into shards. The network is composed
of a set of nodes, symbolized as N = {N1,N2, ...,Nn}, which are fundamental units responsible
for processing transactions, maintaining ledger integrity, and executing consensus protocols.
These nodes are organized into distinct shards, denoted as S = {S1,S2, ...,Sm}, with the inten-
tion of parallelizing transaction processing and enhancing system scalability. During a random
round r reshard, the allocation of nodes to shards is determined by a hash function applied
to the node’s public key, Alloc(Ni) = hash(pki) mod 2s, where s represents the sharding
parameter. This architecture allows the Frustum system to efficiently distribute workload
across shards, thus addressing scalability while ensuring the security and decentralization of
the blockchain.

In the Frustum blockchain system, the consensus process is defined streamlined yet robust,
comprising several key steps to safeguard the network’s integrity and consensus. It begins
with the Global Leader Election, where a global leader, Lglobal , is chosen from the L-shard
through the election function elect(L). This leader is crucial for orchestrating the consensus
across the network. Next, during the Block Generation phase, a candidate block, Bgen, is
formed by compiling transaction requests, Treq, using the packing function pack(Treq). This
block contains the transactions proposed for the blockchain. The Consensus Protocol follows,
initiating with the Pre-prepare step where Bgen is shared with leaders via the distribution
function distribute(Bgen,L). During the Prepare phase, shard followers, F , authenticate Bdist
using veri f y(Bdist ,F), ensuring only valid transactions proceed. The Commit phase depends
on the outcome of verifications. If the count of nodes that verified the block, |Veri f ied|,
surpasses the supermajority threshold, λ |F |, Bgen is committed to the blockchain as Bval .
If not, it’s discarded. This system guarantees consensus is only achieved with ample node
agreement. The Consensus Flow is formally encapsulated as:

Consensus(Bgen) =

{
Sysnew = Sysold⊕Bval if |Veri f ied|> λ |F |
Discard Bgen otherwise

This represents a binary consensus decision: a block is either accepted and updates the
state to Sysnew = Sysold⊕Bval if it meets validation, or discarded. The parameters λ is crucial,
denoting the supermajority threshold, the verification count, and the system’s states pre and
post-consensus. This framework ensures a secure, democratic, and efficient consensus route in
the Frustum blockchain system.

3.2. Security assumptions and properties

The security guarantees established in Frustum rely on certain key assumptions to ensure
the robustness of the system. We make three assumptions related to the limited presence of
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malicious nodes, the reliability of digital signatures for authentication, and the effectiveness of
the system’s response to potential tampering. These assumptions collectively contribute to the
establishment of a secure consensus process within the Frustum blockchain system.

• Robust Digital Signature Authentication (A1). Let Ds denote the digital signature
mechanism. The assumption A1 posits that Ds functions correctly, enabling clients to
authenticate requests (Rc) and honest nodes to verify these requests’ authenticity (Vr).
This assumption is pivotal, forming the cornerstone of Frustum’s consensus security.

• Limited Malicious Nodes (A2). Denote by Mn the number of malicious nodes within
a shard, and let Tn represent the total nodes in the shard. Frustum posits that for any
shard, particularly the critical L-shard generating new blocks, Mn <

1
3Tn. This limitation

is vital for securing a majority consensus among honest nodes, essential for the PBFT
algorithm’s success within the L-shard.

• Effective Response to Tampering (A3). Assuming a potential tampering event by a
malicious leader within a shard, this assumption asserts that a majority of honest nodes,
upon detecting tampering via digital signature verification (Va), will initiate a leader
re-election process. This assumption highlights the system’s agility and dependability in
mitigating threats.

We also define the security properties that the system is designed to uphold as below. These
properties are critical as they lay the groundwork for formal security proofs in Section 4.1.:

• Consensus Integrity (P1). The integrity of the consensus process necessitates that each
block added to the blockchain, denoted as Bgen, results from the accurate execution of
the consensus protocol. This implies unanimous agreement on Bgen’s contents among all
honest nodes.

• Shard Majority Goodness (P2). The security model assumes the majority of nodes
(M j) in any given shard are honest. Symbolically, this means the probability P(M j)
approaches certainty (limn→∞ P(M j) = 1) as the network size increases.

• Resilience to Collusion and Re-sharding Attacks (P3). A secure re-sharding mech-
anism is critical to preventing adversaries from gaining disproportionate control over
specific shards during re-sharding events. The system must ensure that it is infeasible
for adversaries to predict shard assignments and thus cannot effectively concentrate their
malicious efforts.

3.3. A hierarchical sharding architecture

The Frustum system consists of n hosts Nn = {N1,N2, ...,Nn} scattered at different geographic
locations, which connect and communicate with each other via the Internet to form a distributed
system. Nodes receive and process transactions and maintain consistent system state as well
as data. Each node has a pair of public and private key files for authentication and encrypted
message transmission over the network.

Nodes take different roles in the system, including shard leaders and followers. Upon re-
ceiving a message from another node, a node feeds back the corresponding response according
to the protocol. Eventually, the system provides consensus service to clients if only sufficient
nodes work properly.

Frustum adopts a layered structure as shown in Figure 5. Firstly, the system divides all
nodes into m shards Sm = {S1,S2, ...,Sm}, which are called F-shards. Each F-shard contains a
number of followers and a leader, and all leaders form an L-shard. In each round of consensus,
a global leader is selected from the L-shard, which is responsible for generating a block and
broadcasting it to the leaders in the F-shards. The F-shard leaders initiate the consensus
processes within their respective shards, and finally send consensus results to the global leader,
which confirms the termination of the consensus process.
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Figure 5. System model of frustum (Triangle: global leaders selected from each F-shard.
Circle: other nodes within each F-shard. x: number of F-shards).

3.4. A random re-sharding mechanism

Frustum uses a sharding mechanism similar to Ethereum [26]. In the initialization phase, each
node generates a fixed-length address based on its public key, and then all nodes are divided
into 2s shards based on the last s bits of their addresses. The unique aspect of Frustum’s
sharding mechanism is that it does not re-shard after every round of consensus, as opposed to
other sharding systems. Instead, Frustum sets a random round r for shard reorganization. This
allows all nodes to perform PoW identity verification and re-shard after r rounds of consensus.
We adopt a mechanism similar to Elastic’s so that the system can identify each node’s identity,
where each node needs to find a PoW solution related to epochRandomness and node identity
information [10]. The epochRandomness will be generated in the last step of the previous
epoch. After their identities are confirmed, the system divides the nodes into 2s committees
based on the last s bits of the node ID.

As shown in Algorithm 1, this algorithm describes a mechanism for random re-sharding
within a distributed system. The algorithm takes as input the total number of nodes (n), the
number of shards (m), and the address length (s) used for sharding, and outputs a new shard
configuration. Lines 1 to 5 describe the initial sharding function that forms initial shards based
on the last (s) bits of the fixed-length addresses generated from each node’s public key. Lines
6 and 7 involve selecting a global leader from a specific shard (L-shard), which is assumed to
be done through a random selection process. Lines 8 to 12 initiate a consensus mechanism
within each shard, led by the shard’s leader, and send the consensus result to the global leader
for shard consensus. Lines 13 and 14 execute a Proof of Work (PoW) identity verification on
nodes. Lines 15 to 30 outline the main algorithm execution process, starting with setting a
random round (r) to determine when re-sharding will occur. In each round, if the set round for
re-sharding is reached, the shard assignment is updated for nodes that have passed identity
verification; otherwise, consensus within the current shard configuration proceeds, preparing
for the next round of re-sharding.

By avoiding the need for frequent sharding reorganization, Frustum’s approach saves
significant resources and time. Additionally, the random re-sharding process makes it chal-
lenging for malicious attackers to deploy malicious nodes in one shard during the re-sharding
phase. In a non-resharding system, the shard’s composition remains fixed and attackers have a
prolonged period to observe and analyze the network, which may allow them to strategically
position their malicious nodes or activities. Malicious attackers can then deploy malicious
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nodes in a specific shard based on the shard structure, making it impossible for that shard
to properly validate transactions and thus compromising the security of the system. In a
sharding system, malicious attackers will attack when the system is being resharded. With the
random-resharding method, a malicious attacker cannot confirm when to launch an attack and
has a higher probability of attack failure.

Algorithm 1: Random Re-Sharding in Frustum
Input: A set of nodes Nn = {N1,N2, . . . ,Nn}, number of shards m, last s bits for sharding, fixed-length

addresses generated from public keys of nodes
Output: A new sharding configuration after r rounds

1 Function InitialSharding(nodes, s):
2 foreach node ∈ nodes do
3 address← GenerateAddress(node.public_key)
4 shard_index← GetLastSBits(address,s)
5 Assign node to shard Sshard_index

6 Function SelectGlobalLeader(L-shard):
7 return RandomNode(L-shard)

8 Function ShardConsensus(F-shards):
9 foreach shard ∈ F-shards do

10 leader← shard.leader
11 consensus_result← leader.InitiateConsensus()
12 Send consensus_result to global_leader

13 Function IdentityVerification(node):
14 return PoWChallenge (node)

15 Function Main():
16 r← RandomRound() // Set a random round r for re-sharding
17 current_round← 0
18 while true do
19 if current_round = r then
20 foreach node ∈ Nn do
21 if IdentityVerification (node) is valid then
22 Update node’s shard assignment

23 r← RandomRound() // Reschedule the next re-sharding round
24 current_round← 0 // Reset the round counter

25 else
26 F-shards← InitialSharding(Nn, s)
27 L-shard← FormLShard(F-shards)
28 global_leader← SelectGlobalLeader(L-shard)
29 ShardConsensus(F-shards)
30 current_round← current_round +1

3.5. A pipelined consensus protocol

Frustum proceeds in fixed time periods called epochs, and each epoch consists of five phases:
Global Leader Election: Each F-shard elects a leader, and all leaders form an L-shard.

Furthermore, the L-shard elects a global leader following a vanilla consensus protocol.
Block Generation: The global leader packages multiple transactions into a block and

initiates a consensus process.
Pre-prepare: The global leader sends the block to all L-shard leaders, which then

distribute the block to followers within their respective shards. Followers add the new block to
the blockchain, and the consensus process for the shard to which the block belongs is initiated,
and followers within the shard verify the block.
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Prepare: A follower sends verification messages to other nodes within the shard to see
whether the transactions are valid.

Commit: After the block is verified, the leader sends a success message to the global
leader, and this epoch of consensus ends. If the block validation fails, the leader sends a failure
message to the global leader, and then forwards the message to other nodes in the system, and
the node will remove the block and all subsequent blocks from the blockchain.

In order to fully utilize resources and improve the parallelism of transaction processing,
Frustum designs the above five phases into a pipelined structure as shown in Figure 6.

Figure 7 illustrates an example of committing a block within an epoch. In the following,
we will describe the consensus flow of Frustum in detail.
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3.5.1. Global leader election

Before any transaction processing, a leader within each F-shard should be elected. A random
number for each node is assigned by a pseudo-random number generator. The node with
the smallest number in each F-shard is the leader of that shard. To ensure randomness, an
alternative approach can be adopted by leveraging a verifiable random function (VRF) [27] or a
trusted third-party service that provides random number generation for the blockchain [28–30].
A smart contract can serve as a trusted third party to offer random number services, ensuring
that the selection of leaders remains unpredictable and secure. By incorporating a VRF or
similar trusted third-party mechanism, Frustum can guarantee the randomness and eliminate
the possibility of adversaries having advance knowledge of future round leaders. This enhances
the overall security and fairness of the leader election process.

A global leader is selected among all F-shard leaders. Besides its role as the leader of its
own F-shard, it is also responsible for generating blocks and propagating consensus messages
to other L-shard nodes. If the node crashes, the system needs to start a new consensus round
for leader selection, which adjourns the transaction processing. Therefore, a stable and reliable
global leader is particularly important. Frustum assigns a selection probability to each node
based on the node’s weight, which is determined by the node’s computing power, storage
capacity, and past behavior. A node with a higher weight has a higher probability of being
selected as the global leader. Once selected, it will send messages to inform other L-shard
nodes of its identity.

3.5.2. Block generation

In many blockchain consensus algorithms, multiple nodes may have the right to generate new
blocks simultaneously. If different blocks are created at the same time, it may complicate the
blockchain with forks [31], where some nodes have inconsistent blockchain states, thereby
affecting the stability and reliability of the system. Therefore, Frustum stipulates that only the
global leader can package transactions and generate new blocks. By centralizing the block
production to the global leader, the Frustum system strategically curtails the incidence of
simultaneous block generation, thereby reducing fork occurrences and fortifying the system’s
stability and dependability.

Specifically, in Frustum, the generation of new blocks is orchestrated by a centrally
appointed global leader. Once elected, the global leader proceeds to gather transactions from
the pool, which contain the amassed yet unrecorded transactions circulated within the network.
These collected transactions are meticulously verified by the leader, confirming the authenticity
of digital signatures, the absence of double-spending, and overall adherence to the network’s
established protocols. Upon successful verification, the transactions are adeptly structured into
a Merkle tree [32]—a binary tree where each leaf is a transaction’s hash and each non-leaf
node is the concatenated hash of its children. This configuration is not only space-efficient but
also secures the integrity of transaction verification within a block.

Utilizing this Merkle tree, the global leader then crafts a block that encapsulates the tree
or its root hash, the transaction list, and fundamental block metadata like block height, which
identifies the block’s sequential order within the chain, and the timestamp, marking the precise
moment the block was constituted.

This newly created block is then disseminated across the network, whereupon receiving
nodes engage in validation checks against the Merkle root and the block’s compliance with
the blockchain’s protocol. Successful validation leads to the incorporation of the block into
the blockchain, a crucial step that concurrently updates the network’s state with the latest
transactions and acknowledges the new block height uniformly across the network.
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3.5.3. Pre-prepare

After the global leader generates a block, it sends the new block to all L-shard nodes, which
then forwards the block to other nodes in their respective F-shards, and further on all nodes
add the block to their local blockchain storage.

An F-shard leader needs to determine whether the block belongs to its own shard, and
if so, it sends a pre-prepare message to its followers to initiate the verification process. The
followers receive the pre-prepare message and validate the content of the message, i.e., the
new block to be committed.

A hash-based assignment method is effective for an F-shard leader to determine if a
block belongs to its shard. Essentially, the process involves applying a predetermined hash
function to the block’s header or a designated sharding field within the block to produce a
hash value. The leader then compares this hash value with the hash ranges assigned to its
shard to verify whether the block falls within its jurisdiction. If the block’s hash value lies
within the leader’s range, it is recognized as part of the F-shard, prompting the leader to
initiate the verification process by sending out a pre-prepare message to its followers. This
method ensures a straightforward and secure mechanism for block assignment in a distributed
blockchain network.

3.5.4. Prepare

After the block is verified, the follower broadcasts a prepare message to other members within
its shard. If a node receives correct prepare messages from more than 2s/3+1 different nodes,
where s is the total number of nodes in the corresponding shard, the next phase starts.

3.5.5. Commit

During the commit phase, the node will send commit messages to other nodes within its shard.
When the number of commit messages received by a node is higher than 2s/3+1, it sends a
confirmation message to the leader of the corresponding shard.

In a sharded blockchain architecture, the integrity of the commit phase is of paramount
importance, wherein the shard leaders are tasked with disseminating a success or failure
message contingent upon achieving a consensus. This message is methodically structured to
include several critical components:

• MessageType: A binary flag that unequivocally indicates the nature of the message,
discerning between a success and a failure outcome.

• ShardId: A distinctive identifier that demarcates the originating shard, ensuring the
proper attribution of the message to its source.

• BlockMetadata: Comprising the block’s hash and height, supplemented by additional
metadata to uniquely characterize the block under consideration.

• VoteCount: An enumeration of the confirmatory messages received, serving as an unam-
biguous metric of consensus.

• Timestamp: A temporal marker denoting the message’s issuance, crucial for synchronicity
and delay analysis across the network.

• DigitalSignature: An authentication schema that corroborates the message’s provenance
and safeguards against alteration, assured by the shard leader’s cryptographic signature.

Once the leader receives confirmation messages from more than s/3+1 different followers,
which means the shard reaches a consensus to submit the block. If s/3+ 1 confirmation
messages are not received within the specified time, then the block cannot be successfully
submitted in this round of consensus, it may be discarded or wait for another round. The
leader sends a verification failure message to the global leader, which then forwards the failure
message to other nodes in the system. The nodes remove the block and all subsequent blocks
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from the blockchain and terminate the consensus process for those blocks, a.k.a flushing. The
specified time here refers to the longest transaction processing time, which can be obtained by
statistically analyzing the processing time of a large number of transactions.

To fortify the message transmission process against the potential dissemination of mislead-
ing information by a shard leader to the global leader. We have employed three mechanisms:
signature validation, cross-validation, and penalization. First, each confirmation missive is
mandated to be signed by its sender and the collection of these authentication tokens is then
integrated into the shard leader’s message, enabling the global leader to perform a verification
of the signatures to validate the legitimacy of the received confirmations. Second, the global
leader is not solely dependent upon the shard leader’s testimony. It engages in corroboratory
data collection from a multiplicity of nodes, particularly in cases where the information re-
layed by the shard leader is indicative of a failure. Finally, incentive alignment and penalty
mechanisms ensure that shard leaders are punished if they are discovered to have propagated
false assertions. Such consequences involve the reduction of staking privileges or the removal
of the leader from their incumbency, thereby fostering an environment conducive to veracious
conduct. The amalgamation of these measures into the consensus algorithm augments the
resilience of the commit phase, diminishing the propensity for malfeasance while amplifying
inter-shard communicative reliability.

4. System analysis

4.1. Security analysis

In this section, we provide security analysis for how Frustum prevents potential threats and
works securely. We first formalize the security definition of Frustum as follows: Consider
a set of nodes with equal computational power, where a fraction is controlled by Byzantine
adversaries. The system parameters include: n, the total number of nodes we aim to generate
in one resharding instance; f , the number of malicious nodes in the shard; f ′ = 1

4 , the fraction
of computational power controlled by malicious users; c, the size of each shard; and m, the
number of shards. We assume that Byzantine adversaries can act arbitrarily, including sending
false or misleading information or causing unpredictable damage within the system. Notably,
they can engage in:

• Voting Manipulation: In a distributed system requiring voting, Byzantine adversaries
may attempt to unduly influence the voting process, for instance, by casting fraudulent
votes to alter the outcome.

• Impersonation: Byzantine adversaries have the capability to impersonate other legiti-
mate nodes, especially leader nodes, sending false messages to misguide the system or
other nodes.

• Collusion Attacks: Attackers may strategically position malicious nodes within the target
shard and collaborate to create greater disruption, such as executing double-spending
attacks.

The adversary considered by the protocol is adaptive. Adversaries adjust their strategies
based on changes within the system, notably during re-sharding events which suggest the need
for adversaries to adapt to new configurations of nodes. To prevent the success of these attacks,
we define a system as secure if it includes the following safety properties:

1. A supermajority consensus can be achieved when the number of malicious nodes in a
shard is less than 1/3 of the total nodes in the respective shard.

2. Honest nodes dominate in all the shards that are generated. Given a control parameter
λ , we can deduce a threshold n0 such that for all n > n0, the probability of the system
maintaining its majority goodness approaches 1.

3. Upon the occurrence of a re-sharding, we guarantee that it is challenging for the adversary
to strategically locate and launch a collusion attack against target nodes.
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First we prove that:
Theorem 1. To achieve the security of the system, Frustum requires that the number of
malicious nodes in each shard is less than 1/3 of the total number of nodes in the corresponding
shard, especially the L-shard.

Proof. The L-shard is a very important part of the system and is responsible for generating
new blocks. Frustum uses the consensus algorithm of PBFT within the L-shard to reach a
consensus on new blocks. The system needs a majority agreement of honest nodes ((n− f )/2)
to reach consensus, and in addition, all malicious nodes may oppose, so these majority of
honest nodes need to outnumber malicious nodes to avoid malicious nodes winning, which
means (n− f )/2 > f . From this, we can infer that the number of malicious nodes is less than
1/3 of the total number.

If the leader of the shard is a malicious node that tampers with the original request before
initiating consensus. Thanks to digital signature, the client will send the original request with
a digital signature, and the honest node will verify the authenticity of the request by a digital
signature, and when most of the honest nodes find the leader tampered message, it will trigger
the view switch, i.e., re-elect the leader.

Theorem 2. Good Majority in Shards. For every sufficiently large integer n≥ n0: among the
first n identities created, at most n0/3−1 are controlled by the adversary w.h.p.

Proof. If all the users start at the same time, each solution generated has a probability 1− f ′

of being taken by the honest nodes. Now, let Xi be an indicator random variable which takes
the value one if the i-th identity is generated by an honest node. Let X = ∑

n0
i=1 Xi. Then, X

follows a binomial distribution.
Thus, we have:

Pr(X ≤ 2n0/3) =
2n0/3

∑
k=0

Pr[X = k] =
2n0/3

∑
k=0

(
n0

k

)
f ′k(1− f ′)n0−k.

This probability decreases exponentially in n0. Given a security parameter λ , we can find
n0 such that Pr[X ≤ 2n0

3 ]≤ 2−λ , for all n≥ n0. The committee size is at least n0 to guarantee
that the fraction of malicious members in a committee is bounded by 1/3, with regard to the
security parameter λ . The value of n0 depends on the security parameter λ . For example, if
λ = 20, or the probability that something bad happens is once every 1 million epochs, we have
n0 ≈ 600.

Theorem 3. Good randomness. Due to the randomness in re-sharding and the integrity of
the consensus protocol, their ability to attack the specific shard is limited and the security in
re-sharding is guaranteed.

Proof. Frustum’s sharding mechanism employs randomness in two key ways to ensure the
security and functionality of the sharding process. Firstly, Frustum assigns nodes to shards
based on the deterministic output of a hash function applied to their public keys. The system
leverages the pseudo-random nature of hash functions to evenly distribute nodes across shards
by utilizing the last s bits of the ID of nodes that have been verified through PoW, assigning
them to one of 2s shards. Regarding the unpredictable and consistent randomness of PoW,
we employ a PoW verification mechanism consistent with Elastico. The proof of the good
randomness of this mechanism has been verified in [10]. Secondly, Frustum introduces a
distinctive feature by eschewing a fixed re-sharding schedule. Instead, the network selects
a random source of randomness, such as a verifiable random function (VRF), to determine
the timing of re-sharding. By avoiding predictable re-sharding after each consensus round,
Frustum effectively thwarts attackers’ ability to anticipate when re-sharding will take place.
These unpredictability significantly hampers the attacker’s capacity to strategically position
malicious nodes within a targeted shard, bolstering the system’s security.
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In essence, Frustum’s security is partly based on the principle of entropy: randomness
increases uncertainty for attackers, making it statistically improbable for them to gain control
over a specific shard or predict the system’s re-sharding schedule. This randomness is a critical
element of the system’s design for maintaining robust security against coordinated attacks on
its sharded blockchain architecture.

4.2. Performance analysis

4.2.1. Confirmation latency

In Frustum, confirmation latency refers to the time it takes for a transaction to go from
being sent to being confirmed. According to the consensus process described in Section 3,
transactions are first sent from the client to the consensus node with time duration, TReq. The
consensus node then caches it in the local transaction pool and waits for TPoolWait to get the
right to pack the transaction into a new block. When the consensus node obtains the right to
generate a new block, it starts a new round to reach consensus after TConsensus. Finally, the
consensus node spends TAck to reply to the client that the transaction has been committed. In
these four different times, TReq and TAck have a relatively fixed value, they may only be relevant
to the network from the client to the consensus node, which is bandwidth dependent. TConsensus
refers to the time required to reach consensus among consensus nodes. The normal case is the
time overhead of three rounds of communication, and if the consensus fails, the transactions in
the block go back to the transaction pool and wait for the new round. So TPoolWait is a random
value with an upper bound, it may be very short when the transaction is packed into a block
immediately after arriving at the transaction pool, or long enough with multi TPoolWait . The
confirmation latency l is shown in the following formula 1.

l = TReq +TPoolWait +TConsensus +TAck (1)

The network delay in the Frustum blockchain system is similar to a partially synchronous
network model (PDFT). The partially synchronous model accounts for periods of synchrony
(with known bounds) and asynchrony (randomness), which aligns with the Frustum system’s
operation. While TReq and TAck provide the periods where network behavior is predictable
and bounded, TPoolWait introduces variability that can’t be predicted ahead of time, although it
does have an upper bound. TConsensus also has a typical bounded time under normal conditions.
This combination of fixed and variable components, along with the presence of upper bounds,
is characteristic of a partially synchronous network model.

4.2.2. Storage consumption

Unlike a full sharding blockchain, all nodes in Frustum maintain the same single blockchain.
The effective data storage capacity is equal to the node with the smallest storage capacity in
the system. This drawback has the better fault tolerance of the system, even if some of the
nodes are offline, the system can still work normally and can continue to serve correctly after
recovery. Liveness analysis gives the exact number of offline nodes and shards that can be
tolerated. A complete sharding blockchain cannot tolerate the nodes of any 1/3 of the shard
being offline, which will result in the transactions of the relevant shard not being committed
and having to wait for recovery. Due to the fact that each shard stores different blockchain
data, a complete sharding blockchain enables fuller use of storage, the more shards there are,
the more storage resources can be used.

5. Evaluation

In this section, the Implementation of a prototype of Frustum is presented. Then we describe
the experimental environment and dataset. At last, the comparative results with two state-of-
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the-art algorithms are shown.

5.1. Implementation

We implement a prototype of Frustum and its comparative algorithms in Golang [33] to
evaluate their performance. By using concurrency models in Golang, it is easy to execute a
large number of concurrent tasks, enabling the creation of multiple blockchain nodes locally
and simulating the pipelined consensus process. We also implement the necessary modules
for experimental evaluation, such as blockchain data storage, transaction pools, and network
communication.

In the implementation, a client has a corresponding F-shard leader and continuously
sends transaction requests to it. The node caches them in its transaction pool. Once the node
becomes a global leader and obtains the right to issue blocks, it packs the transactions from
the transaction pool to generate new blocks and then initiates the consensus process.

5.2. Methodology

5.2.1. Testbed

We evaluate the Frustum prototype on a workstation with 20 CPU cores (@3.7GHz) and
125GB memory.

Each experiment in this section executes a consensus algorithm on 512 blocks and the
system has 1024 nodes by default. Only the statistics gathered during the stable phase of the
system operation is taken into account, i.e. that of the warming up and cooling down phases is
excluded.

5.2.2. Transaction dataset

We employ a real blockchain transaction trace, named Ethereum transactions, extracted
from XBlock-ETH [24]. The dataset comes from the real Ether transaction data pulled up
using the XBlock-ETH tool, with block heights ranging from 0 to 14,499,999 and a total
number of transactions of 1,524,325,672. We randomly select 500,000 transactions from it as
experimental data, and fine-tune their data structure to fit our experiments.

The transaction dataset also contains cross-shard transactions for full sharding systems
that maintain a multi-chain structure, such as RapidChain [9]. As shown in Figure 8, the
proportion of cross-shard transactions increases as the number of shards increases. When the
shard number is 16, the proportion of cross-shard transactions exceeds 90%, which means that
more than 90% of transactions cannot be processed on the local node and require inter-shard
communication to ensure correct submission.
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Figure 8. Percentage of cross-shard transactions in the Ethereum dataset with different
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5.2.3. Baselines

Frustum is a shard-based, single-chain blockchain consensus protocol, therefore we compare
it against two state-of-the-art blockchain systems, Elastico [10] and RapidChain [9], which
are partial sharding and full sharding blockchain systems respectively.

For fairness, the classical PBFT consensus algorithm is adopted for all intra-shard and
inter-shard consensus progress, which avoids any impact of different underlying consensus
algorithms.

5.3. Results

The experimental results are shown and analyzed in this section.

5.3.1. Choice of block size

To determine a reasonable block size, we measure the throughput and latency of Frustum with
the number of transactions contained in the block changing from 16 to 128.

As shown in Figure 9, with an increasing number of transactions in a block, both the
transaction throughput and commit latency show an upward trend. In order to ensure that
the system can meet the requirements of mainstream payment systems for low latency while
having the highest possible throughput, we set the number of block transactions to 64 and
further analyse the system performance on this basis.
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Figure 9. The throughput and latency of Frustum change with the number of
block transactions.

5.3.2. Influence of pipelining

This experiment presents the impact of using a pipelining structure on transaction throughput
as the number of shards increases. The comparative algorithm uses no pipelining but shares
the same consensus process as Frustum.

Figure 10 shows the changes in throughput of the comparison algorithm and Frustum as
the number of shards increases from 2 to 16. More shards mean increasing in parallelism and
that more transactions can be processed simultaneously, thus the throughput of both algorithms
increases. At the same time, with all shard numbers, the performance of Frustum with a
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pipelined structure is always superior to that of the comparison algorithm without pipelining.
For example, with 16 shards, the throughput of the algorithms without and with pipelining is
3383 tx/sec and 4699 tx/sec respectively, increasing by 39%. It can be seen that pipelining
significantly improves transaction processing parallelism and optimizes system performance.
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Figure 10. The throughput changes with the number of shards w/o a pipeline structure.

5.3.3. Influence of shard number

Frustum is a sharding-based consensus protocol, therefore We compare throughput and latency
of Frustum with Elastico and RapidChain as the number of shards varies.

As shown in Figure 11a, the transaction throughput of Frustum w/o a pipelined structure
always outperforms the other two algorithms. When the shard number is 16, the throughput of
RapidChain, Elastico, and Frustum is 1680 tx/sec, 2787 tex/sec, and 4699 tx/sec respectively.
Frustum is 2.79 times and 1.68 times faster. The throughput of both Frustum and Elastico
increases as the number of shards increases, but Elastico increases relatively slower. Elastico
requires that each round of consensus involves reorganizing the shards, and the updated shard
states are sent to every node. The frequent shard reorganizing increases the computational and
communication costs, leading to a decrease in system performance. Additionally, each block
needs to be further validated by the final committee, which increases the processing time for
transactions, thereby affecting the system’s throughput. RapidChain is a consensus algorithm
with a multi-chain structure. The proportion of cross-shard transactions increases with the
shard number. RapidChain splits cross-shard transactions into multiple sub-transactions and
indirectly verifies the original transaction by proving the validity of the sub-transactions. As
shown in Figure 8, even with only 4 shards, the majority of transactions should be split.
Substantial cross-shard processing significantly increases the average latency of transactions
and thus cancels out the benefit of sharding, or even worsens the transaction throughput.
Maintaining a single blockchain across shards guarantees the scalability of Frustum in terms
of transaction throughput.

Figure 11b shows how the transaction commit latency of the four algorithms changes
as the number of shards increases. Frustum without a pipeline structure always has a lower
latency than Elastico and RapidChain, while pipelined Frustum’s latency increases compared
to others. This is because the pipeline structure requires additional pipeline communication to
synchronize the process, resulting in more processing time for one transaction. Therefore, for
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some latency-sensitive applications, No pipelined Frustum can be applied as an alternative to
the Frustum.
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Figure 11. The throughput and latency of Frustum, Elastico and RapidChain changes with
the number of shards.

5.3.4. Evaluation summary

In a nutshell, from a system reliability perspective, a full sharding system splits data into
individual shards, and if a shard becomes unavailable, some cross-shard transactions cannot
be committed until the shard is restored. Therefore, a full sharding system sacrifices system
reliability to increase throughput. Partial sharding systems, such as Frustum and Elastico,
maintain a consistent single-chain structure across all nodes, and the failure of one shard
does not affect cross-shard and other transaction submissions. Consequently, in cross-shard
transaction processing, Frustum is faster than Rapidchain. As the number of shards increases,
there are more cross-shard transactions in the network, requiring Rapidchain to frequently split
cross-shard transactions and wait for all sub-transactions to confirm. Hence, as the number of
shards in Rapidchain increases, throughput will also decrease significantly.

Experiments also demonstrated that Frustum with a pipeline structure performs better than
those executed in serial loops. Additionally, for latency-insensitive scenarios, Frustum without
a pipeline structure can be applied as an alternative to the Frustum.

6. Related work

In this section, we review three categories of blockchain consensus systems, namely no
sharding system, partial sharding system, and full sharing system.

6.1. No sharding system

Bitcoin [1] is the most famous no sharding system, using Proof of Work (PoW) [34] as a
consensus algorithm. In a no sharding blockchain system, all nodes in the network process
and store every transaction [35], which means that as the number of nodes and transactions
increase, the system becomes slower and less efficient. This lead to longer confirmation times
and poor scalability. Furthermore, a no sharding system can also be more vulnerable to attacks
such as 51% attacks [36], where a single entity controls more than half of the network’s
computing power and can manipulate the blockchain’s history.
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6.2. Partial sharding system

Elastico [10] is the first public sharding-based blockchain system in which each shard main-
tains its own independent blockchain and is responsible for processing a subset of the overall
transactions. This allows for more efficient processing and increased transaction throughput.
Additionally, Elastico achieves consensus based on PBFT, which helps to maintain the security
of the system and prevent malicious behavior. Elastico only implements network and transac-
tion sharding, but does not achieve state sharding in storage and communication, thus Elastico
is a partial sharding system.

Although Elastico improves the throughput and transaction latency compared to Bitcoin,
it still has several drawbacks. On the one hand, Elastico requires all nodes solving PoWs to
reconstruct identities and rebuild all shards in every epoch, this results in additional overhead
and limits the system performance [9]. On the other hand, the block needs to be validated by
the final shard before it can be stored in the global blockchain, which adds complexity to the
consensus process and increases the average submission latency of transactions.

6.3. Full sharding system

Another sharding system is full sharding, where transactions, network, and data storage
states are all sharded. Blockchain systems like Monoxide [37], OmniLedger [8] and Rapid-
chain [9]are full sharding systems, each shard maintains different blockchain data indepen-
dently, also called multi-chain.

Omniledger is the first full sharding blockchain platform that aims to provide high scalabil-
ity and security while supporting cross-shard transactions. To enable cross-shard transactions,
Omniledger uses a technique called "atomic cross-shard transactions," which ensures that
either all the involved shards commit the transaction or none of them do. This is done by
first locking the assets on the source shard and then transferring them to the destination shard
through a series of transactions that are guaranteed to be atomic. If any of the transactions
fail, the entire process is rolled back to its initial state. RapidChain adopts a similar method, it
splits the original cross-shard transaction into multiple sub-transactions for validation, and the
confirmation of sub-transactions indirectly indicates the validity of the original transaction.
The difference between OmniLedger and Rapidchain is whether the client needs to be involved
in the whole process of the cross-shard transaction. Rapidchain chooses a light client, it simply
submits a transaction to nearby consensus nodes without having to know the entire network
topology and engages in the cumbersome processing mechanism of cross-shard transactions.

Although full sharding has improved the scalability of the blockchain system, as the
percentage of cross-shard transaction increases, the network is flooded with inter-shard com-
munication, and each cross-shard transaction requires additional processing, it may affect the
system performance and undermine the benefits of parallelization from full sharding.

7. Conclusion

In this article, we propose Frustum, a sharding-based blockchain consensus protocol using
a pipelined structure. Frustum maintains a globally consistent single blockchain, avoiding
additional communication costs caused by cross-shard transactions. Frustum also uses a
layered structure to reduce communication overhead and the average time for processing
transactions, thus increasing system throughput. Furthermore, Frustum divides the consensus
process into multiple stages, and a pipeline structure is adopted to allow parallel execution
of each stage. Finally, our empirical evaluation demonstrates that Frustum showing better
performance than previous work.
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