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Abstract: RNA silencing serves as the primary antiviral immune system in plants, fungi, and 

invertebrates. Upon virus invasion, its replication intermediates act as pathogen-associated 

molecular patterns (PAMPs), promptly recognized and processed by Dicer into siRNAs. 

These virus-derived small interfering RNAs (vsiRNAs) then guide specific cleavage of the 

viral genome. In mammalian cells, the presence of vsiRNAs has been difficult to detect. 

However, recent studies indicate that vsiRNA expression can be detected when viruses infect 

undifferentiated mammalian cells. These findings complement new antiviral mechanisms in 

mammalian cells, but also face several controversies. Therefore, we will briefly discuss the 

current research status of vsiRNAs in mammals and analyze the controversies existing in 

this field. 
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1. Introduction 

Viruses are non-cellular pathogens that engage in intracellular parasitism. Different hosts 

have evolved unique mechanisms to inhibit viral infection and spread. For mammals, innate 

immunity plays a central role in defense against invading viruses [1,2]. Within innate 

immunity, a limited set of germline-encoded immune receptors surveil the invasion of foreign 

pathogens. Upon viral disintegration, its constituents, acting as pathogen-associated 
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molecular patterns (PAMPs), are rapidly recognized by the host's pattern recognition 

receptors (PRRs), triggering the production and release of type I interferon (IFN-I). 

Subsequently, IFN molecules activate multiple signaling cascades and initiate the 

transcription of immune-related effector genes, thereby exerting systemic antiviral immunity [3]. 

Currently, the pattern recognition receptors (PRRs) that are well- characterized primarily 

include Toll-like receptors (TLRs), NOD-like receptors (NLRs), and RIG-I-like receptors 

(RLRs). In plants and invertebrates, the RNA interference (RNAi) system serves as a key 

defense mechanism against viral infections [4,5]. Following viral infiltration, these hosts 

undergo a significant increase in the production of virus-derived small interfering RNAs 

(vsiRNAs), characterized by distinct Dicer-mediated processing patterns. These vsiRNAs 

effectively target viral genomes, hindering the viral replication process. Furthermore, it's 

noteworthy that plant and invertebrate viruses often exhibit a preference for infecting hosts 

lacking a functional RNAi system, facilitating higher levels of replication [6,7]. 

In fact, it has been long recognized that a fully functional RNAi system exists in 

mammals. However, current understanding mainly revolves around its role in regulating 

mammalian gene expression and its potential therapeutic applications for targeting aberrant 

gene expression in disease treatment [8–10]. Early inquiries into whether the RNAi system 

elicits antiviral effects in mammals faced skepticism due to the difficulty in detecting 

functional virus-derived small RNA fragments. Nevertheless, recent investigations have unveiled 

the expression of vsiRNAs in mammals, indicating the potential existence of RNAi-mediated 

antiviral mechanisms [11,12]. In this article, we aim to comprehensively review the latest 

insights in this area, focusing on the discovery and immune function of vsiRNAs in 

mammals. Additionally, we will delve into the cell-intrinsic antiviral defense triggered by 

vsiRNAs and explore how vsiRNAs released into circulation act as immune molecules, 

triggering systemic antiviral immunity. 

2. VsiRNAs-based antiviral immunity in plants and invertebrates 

RNA silencing functions as a primary antiviral immune system in plants, fungi, and 

invertebrates. Hamilton et al. [13] first described this antiviral response in plants, and 

intensive studies have entered this field and gradually uncovered the mechanism of RNAi-based 

antiviral immunity [14–18]. When host cells are infected by a virus, viral components are 

disassembled and genomic nucleic acids are released. Episomal DNA/RNA genome turns on 

transcription or replication to synthesize other viral materials. RNA virus replication via 

forming long double-stranded RNA (dsRNA) replication intermediates which are immediately 

recognized and sliced by endoribonuclease (RNase) III Dicer into small RNAs (Figure 1). In 

plants, the model plant Arabidopsis thaliana encodes four Dicer-like proteins (DCL1 to 

DCL4), DCL2–4 processes long dsRNA into siRNAs with 22–24 nucleotides in length, 

separately [19]. whereas Drosophila has two distinct Dicers, Dicer-1(Dcr1) and Dicer-

2(Dcr2) which engage in miRNAs and siRNAs biogenesis respectively [20], and vertebrates 

only encode one dicer. New-born viral dsRNAs were recognized by cellular dsRNA-binding 

proteins(DRB) such as DRB4 (in Arabidopsis) [21] or R2D2 (in Drosophila) [20]. DsRNA-
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DRB complex determines the affinity of Dicer with dsRNAs and further facilitates Dicer 

processing of viral dsRNAs into small RNAs. These small RNAs are 21 to 23 nucleotides in 

length and share canonical siRNA features which are seen as vsiRNAs. Upon small RNAs 

generation including vsiRNAs, specific proteins will add some modifications to prevent its 

degradation. For example, Arabidopsis HEN1 methylates the 2’ hydroxy group at the 3’-end 

of small RNAs [22]. Deep sequencing shows that AGO-bounded vsiRNAs in Drosophila are 

methylated at the 3’-end [23]. When generated by infected cells, vsiRNAs are subsequently 

loaded into the RNA-induced silencing complex (RISC) and guided specific cleave of the 

viral genome via base complementary pairing. The Argonaute (AGO) protein family are core 

components of RISC which exhibit high binding affinity to Dicer-processed small RNAs and 

are the effector molecules of the RNA silencing pathway which mediate directly catalytic 

cleaving of target sequence recognized by small RNA.  

 

Figure 1. The mechanism of RNAi against viral infection. 

RNA viruses invade cells and release their genomic nucleic acids for initial transcription, 

forming long double-stranded RNA replication intermediates (dsRNAs), which are promptly 

recognized and cleaved by dicer into vsiRNAs. These vsiRNAs load into RISC and guide 

specific cleavage of the viral genome via base complementary pairing to prevent 

virus replication. 

To counteract this RNAi-based antiviral immunity, viruses have evolved some strategies to 

resist it. A main protection mechanism is to generate viral suppressors of RNA silencing (VSRs) 

which effectively suppress the RNAi pathway by inhibiting RNA sensing and slicing [24–26] or 
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preventing RISC assembly through binding to its components [27]. Until now, over 35 

distinct VSR families have been found in plant virus types [28]. The P38 protein, a VSR of 

Turnip crinkle virus (TCV), could bind viral dsRNAs in a size-independent manner to protect 

them from DCLs processing [29]. A subsequent study showed that P38 can also interfere 

with AGO1-related networks to further disrupt DCLs activities in Arabidopsis [30]. The P19 

protein, derived from tombusviruses, specifically prevents siRNA loading into RISC by 

forming a tail-to-tail homodimer [31,32]. VSR expression in invertebrates has also been 

reported, the B2 protein of FHV functions to prevent RNA silencing by binding to dsRNA 

and is essential for virus infection [16]. 

3. The discovery of vsiRNAs in mammals 

While it's well-established that vsiRNAs play a crucial role in antiviral defense mechanisms in 

plants and invertebrates, a comparable phenomenon has long eluded observation in mammals. 

The major reason was that it’s hard to detect virus-derived small RNAs (vsRNAs) with siRNA 

features during viral infection in mammalian cells. In 2008, Zhang et al. employed sequencing 

techniques and successfully identified several virus-derived miRNAs in infected mammalian 

cells, yet vsRNAs with low abundance remained elusive across various viruses [33]. Similarly, 

Parameswaran et al. [34] utilized six different viruses to infect diverse mammalian cell types 

but failed to identify a group of vsRNAs with specific sizes 、 distribution patterns or 

biochemical features like plant and invertebrate. Instead, vsRNAs in mammals predominantly 

arise as breakdown products of viral RNAs with no size preference [34–36]. 

Up until 2013, a pivotal breakthrough emerged from two studies, which documented, for 

the first time, the presence of vsiRNAs in mammals. These two studies revealed that 

dysfunction of VSR proteins from Nodamura virus (NoV) [11]and Encephalomyocarditis 

virus (EMCV) [12]induced the production of vsiRNAs in infected mouse embryonic stem 

cells (mESCs), baby hamster kidney 21 cells (BHK-21), and newborn mice. Deep sequencing 

unveiled that these vsiRNAs typically ranged from 21-bp to 23-bp, with a predominant 22-nt 

peak on both strands. These vsiRNAs exhibited characteristic Dicer-dependent processing 

features, including an approximately 20-nt perfectly base-paired region and a 2-nt 3’ overhang. 

These seminal studies illuminated the RNAi-based antiviral immunity in mammals. 

Subsequently, Benitez et al. engineered the Influenza A virus (IAV) by incorporating a 

siRNA sequence from the viral NS segment and successfully detected siRNA expression in 

infected A549 cells via Northern blotting [37]. Concurrently, Li et al. demonstrated that a 

VSR-deficient mutant of IAV triggered Dicer-dependent production of vsiRNAs in 

differentiated mammalian somatic cells [38]. The abundance of these vsiRNAs, equivalent 

to the total mature miRNA content (0.34% vs. 0.81% of total sequenced reads), was sufficient 

for cells to exert RNAi function. Notably, other vsiRNAs derived from various viruses have 

also been identified in mammalian cells. Qiu et al. identified a VSR protein 3A of Human 

enterovirus 71 (HEV71) and observed that using a 3A-impaired mutant HEV71 readily 

induced the production of vsiRNAs in primary murine lung fibroblasts (MLFs), human 

rhabdomyosarcoma RD cells, and newborn mice [39]. In 2020, Qiu et al. discovered that 
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Dengue virus (DENV), a mosquito-borne flavivirus, could also induce vsiRNAs production 

in human somatic cells when its VSR was disabled [40]. Additionally, three independent 

studies detected vsiRNAs in human neural progenitors, neural stem cells, and mice during 

Zika virus (ZIKV) infection [41–43]. 

NoV, EMCV, HEV71, ZIKV, and DENV are all positive-strand RNA viruses from 

different families. Specifically, NoV belongs to the Nodaviridae, while EMCV and HEV71 

belong to the Picornaviridae. On the other hand, ZIKV and DENV are classified under the 

Flaviviridae. IAV, in contrast, is a negative-strand RNA virus belonging to the 

Orthomyxoviridae (Table 1). Despite their taxonomic diversity, the vsiRNAs induced by 

these distinct viruses were readily detected in infected mammalian cells through deep 

sequencing or Northern blot hybridization. Remarkably, the relative abundance of these 

vsiRNAs bears similarity between insects and mammals. While, why were previous studies 

unable to detect vsiRNAs? There are several possible reasons. Firstly, most recent studies 

utilize virus strains lacking VSR proteins, enabling the successful detection of abundant 

vsiRNAs. Previous experiments might have employed wild-type virus strains, thereby 

suppressing vsiRNAs production [44,45]. Secondly, insufficient sequencing depth in 

previous experiments may have hindered the detection of sufficient vsiRNAs levels. Lastly, 

research suggests that products of RNase-L may mask the presence of vsiRNAs. For instance, 

Girardi et al. detected numerous vsRNAs lacking distribution patterns (mostly RNase-L 

products) upon Sindbis virus (SINV) infection in 293T cells [46]. Li et al. reanalyzed 

Girardi's data after optimizing algorithms to exclude RNase-L products and uncovered 

abundant 22-nt vsiRNAs. Furthermore, they found that knocking down RNase-L facilitated the 

detection of vsiRNAs [47]. It's worth noting that previous studies were conducted in 

differentiated mammalian cells, where in vitro experiments may activate RNase-L, leading 

to the coverage of vsiRNAs by abundant RNase L products, rendering them undetectable. 

Table 1. Validated virus to induce vsiRNAs generation in mammals. 

Viral genome Virus name Family VSR Refs 

(+)RNA 

Nodamura virus Nodaviridae B2 [11] 

Encephalomyocarditis virus Picornaviridae ND [12] 

Enterovirus-A71 Picornaviridae 3A [39] 

Zika virus Flaviviridae ND [41–43] 

Dengue virus 2 Flaviviridae NS2A [40] 

(-)RNA Influenza A virus Orthomyxoviridae NS1 [37] 

(+)RNA, positive-strand RNA; (-)RNA, negative-strand RNA; ND, not determined 
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While the generation of vsiRNAs in mammals remains a topic of debate, an increasing 

number of studies have indeed successfully detected their expression, a non-random 

phenomenon.These findings imply that the production of vsiRNAs is not exclusive to 

particular viruses but rather linked to the formation of long dsRNA structures by the infecting 

virus. Moreover, the substantial abundance of vsiRNAs underscores their potential 

significance in mediating RNAi-based silencing pathways within mammalian cells. Taken 

together, these observations suggest that the Dicer-dependent processing of viral dsRNA into 

vsiRNAs may represent a conserved mechanism employed by mammalian cells in response 

to viral infection. 

4. Cell-intrinsic immune function of vsiRNAs and their relationship with the IFN pathway 

With the discovery of vsiRNAs in mammals, various groups started to investigate whether 

these vsiRNAs can effectively inhibit viral replication in mammals. Li et al. respectively 

infected BHK-21 cells and suckling mice with wild-type NoV strain and NoV-B2 protein 

mutant strain (NoVΔB2) [11]. The results demonstrated a significant reduction in infection 

activity both in vitro and in vivo for NoVΔB2. Suckling mice exhibited resistance to 

NoVΔB2, surviving for up to 4 weeks post-infection with a 100% mortality rate observed in 

the wild-type NoV infection, suggesting an enhanced immunity against the mutant strain. 

Meanwhile, Maillard et al. infected mESCs with EMCV and subsequently utilized 

immunoprecipitation to enrich small RNAs bound to AGO2, revealing the capture of 

vsiRNAs [41]. These findings collectively imply the involvement of vsiRNAs in mammals' 

RNAi pathway, potentially serving as an effective mechanism to combat viral replication. 

Although the studies mentioned above establish the effectiveness of vsiRNAs in 

inhibiting viral replication in mammals, these findings were predominantly derived from 

undifferentiated cells lacking a mature IFN response pathway. In mature mammalian cells, 

the IFN response has long been recognized as a direct antiviral mechanism. Therefore, the 

interplay between the IFN response and RNAi-based antiviral mechanisms has become a 

focal point of interest. 

In fact, Maillard et al.'s early work revealed a significant reduction in EMCV-derived 

siRNAs as mESCs differentiated, suggesting a shift in their antiviral mechanisms during 

mammalian cell differentiation [12]. Flemr et al.'s study identified an isoform of Dicer in 

mouse oocytes lacking the N-terminal helicase domain present in the full-length Dicer [48]. 

This isoform of Dicer exhibits enhanced cleavage efficiency of long dsRNA compared to the 

full-length Dicer. Bryan Cullen et al.'s work further confirmed this finding by constructing a 

human Dicer protein lacking the N-terminal helicase domain, demonstrating a 3.39-fold 

increase in cleavage efficiency of long dsRNA compared to full-length Dicer [49]. This 

partially explains the reduction in vsiRNAs production observed in differentiating 

mammalian cells. Similarly, in somatic cells, viral disassembly products appear to be more 

readily recognized by the RIG-I family, leading to rapid activation of downstream 

interferon-stimulated genes（ISGs）expression and exerting antiviral effects. In studies on 

ISGs, Seo et al. discovered that increased expression of certain ISGs may suppress RISC 



ExRNA   Review 

7 

 

activity [50]. Additionally, Veen et al. suggested that mammalian somatic cells can express 

IFN-inducible proteins such as LGP2, which inhibit Dicer slicing and consequently hinder 

the RNAi-based antiviral response in the presence of an intact IFN system [51]. This suggests 

that the RNAi-based antiviral response seems to serve as an early defense mechanism 

employed by mammals against viral invasion. However, as the organism matures, the IFN 

response gradually takes precedence over RNAi in antiviral defense. 

To investigate whether RNAi-based antiviral response in somatic cells is replaced or 

masked by the IFN response, Maillar et al. constructed an IFN-deficient cell line by deleting 

Mitochondrial antiviral-signaling protein (MAVS) [52]. MAVS is a key protein that triggers 

downstream production and secretion of IFN-α and β by binding with PRRs, thereby 

initiating IFN signaling cascade. By transfecting long dsRNA into Mavs-/- MEFs to simulate 

virus invasion, Maillar et al. found that these "vaccinated" mammalian somatic cells show a 

comparable antiviral resistance in response to homologous virus infection. This suggests that 

in somatic cells, when the IFN response is absent, they can still employ RNAi-based antiviral 

mechanisms to combat virus invasion, whereas under normal conditions, RNAi-based antiviral 

response is masked by the IFN response. Meanwhile, Li et al. devised a novel approach to 

confirm the presence of vsiRNAs in mammalian somatic cells [38]. It is established that vsiRNAs 

generation relies on Dicer cleavage of viral RNA intermediates, with AGOs selectively 

associating with Dicer products. Through Argonaute co-immunoprecipitation (co-IP) 

from Influenza A virus (IAV) infected mammalian somatic cells, Li et al. successfully 

identified vsiRNAs expression via deep sequencing. Further investigations utilized Ago2 

catalytic-deficient primary mouse embryonic fibroblasts (Ago2D597A), revealing a 

significant elevation in virus levels in Ago2D597A cells compared to wild-type cells post-

IAV infection. Subsequent analyses indicated comparable levels of type I IFN and ISG 

expression in wild-type and Ago2D597A MEFs following IAV infection, suggesting an 

IFN-independent antiviral response mediated by vsiRNAs in somatic cells.  Subsequent 

studies have also demonstrated the phenomenon of RNAi-mediated antiviral activity in 

mature cells by pre-inoculating VSR-deficient virus in vivo and assess the rescue of viral 

replication after infecting recombinant virus containing virus fragments [39,42,53]. 

5. Secreted vsiRNAs for immune function 

When cells undergo infection or pathological changes, they often release various factors to 

prompt the organism to counteract adverse effects. Extracellular vesicles serve as pivotal 

mediators for intercellular material exchange and communication in this process [54]. These 

vesicles, characterized by small membrane structures, encapsulate a diverse cargo of proteins, 

lipids, and nucleic acids [55]. Extracellular vesicles can be secreted by a variety of cell types 

and remain stably present in various circulating body fluids. During viral infections, the 

organism can also utilize extracellular vesicles to transport viral materials to other cells, 

triggering an immune response [56,57]. Kouwaki et al. conducted a comprehensive review 

on how virus-derived miRNAs (v-miRs) are encapsulated into exosomes and recognized 

by immune cells, leading to the induction of innate immune responses [58]. For instance, 
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HCV can associate with exosomes via CD81 and release its RNA into them [59]. These 

RNA-containing exosomes are then internalized by macrophages and dendritic cells (DCs), 

resulting in the production of type I interferons (IFNs). Knocking down ESCRT-I or -III 

complex, key components of exosome biogenesis, in infected cells attenuates IFN production. 

Similarly, Naqvi et al. reviewed the immune function of human herpesvirus-encoded miRNAs 

in mammals [60]. These v-miRs not only target immune-associated genes in host cells but 

also exploit host exosome pathways to facilitate viral immune evasion. These findings confirm 

that vsRNAs can be delivered by exosomes to exert cell-extrinsic immunomodulatory functions 

in mammals. 

RNAi-mediated antiviral immunity has been observed to spread from cell to cell or 

through cross-species interactions, as reported in plants and worms. Tassetto et al. 

demonstrated a similar phenomenon in their study, where macrophage-like haemocytes were 

observed to uptake virus-derived double-stranded RNA (dsRNA) and secrete vsiRNAs in 

exosome-like vesicles (ELVs), initiating systemic antiviral immunity [61]. In brief, 

haemocytes take up viral RNA released by infected cells and synthesize viral cDNA via 

endogenous reverse transcriptases. These viral cDNAs act as templates for the production of 

new vsiRNAs, which are subsequently encapsulated and secreted into ELVs, facilitating the 

spread of virus-specific immunity to other healthy cells. 

Recently, a similar phenomenon has been reported in mammal. Zhang et al. infected 

suckling mice with a B2-deficient mutant of NoV, as they had done previously, and 

successfully detected vsiRNAs in mouse serum [62]. Interestingly, they observed that 

vsiRNAs were approximately 60-fold enriched in exosomes compared to serum (2.8% vs. 

0.05% of the total). Furthermore, they tested other viruses known to induce vsiRNAs 

production in mammalian cells, such as SINV and ZIKV, by infecting C57BL/6 or BALB/c 

infant mice. Similar results were obtained, indicating a high accumulation of vsiRNAs in 

exosomes. This suggests that abundant vsiRNAs can be secreted into exosomes and 

transported through the bloodstream in mice following viral infection. To investigate whether 

secreted vsiRNAs enriched in exosomes can confer antiviral protection, the authors 

pretreated cells with purified vsiRNAs-exosomes from virus-infected infant mice and 

observed a reduction in virus abundance. Additionally, luciferase reporter experiments, in 

which the NoV genome frame targeted by vsiRNAs from NoVΔB2-infected infant mice was 

inserted into the 3’ untranslated region (UTR) of the luciferase reporter gene, revealed that 

exosomes purified from NoVΔB2-infected infant mice significantly suppressed luciferase 

expression. This effect was not observed with mock exosomes or in an Ago2 knockout cell 

line. Finally, in vivo experiments demonstrated that injection of vsiRNAs-containing 

exosomes significantly reduced viral RNA accumulation in both wild-type and interferon 

(IFN)-deficient mice. 

Previous studies suggested that cells infected by viruses are in a hijacked state, with their 

secreted factors potentially favoring the spread of the virus itself [63–65]. The host often 

maintains homeostasis by eliminating infected cells. However, Zhang's research has revealed 

that infected cells can also transmit vsiRNAs to healthy cells via exosomes (Figure 2). This 

transfer equips healthy cells with antiviral capabilities in advance, thus impeding viral 
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dissemination. This discovery significantly advances our comprehension of the antiviral 

immune mechanisms in mammals. 

 

Figure 2. Secreted vsiRNAs for cell-extrinsic immune function.  

VsiRNAs produced by infected cells are secreted into the bloodstream encapsulated 

within exosomes. These exosomes, containing vsiRNAs, disseminate and are taken up by 

neighboring cells. Upon uptake, the vsiRNAs are released into the cytosol, where they exert 

their antiviral immune function through RISC-mediated specific cleavage of invading 

viral genomes. 

6. Conclusions 

RNAi-based antiviral immunity is highly conserved across eukaryotes. Upon virus invasion 

of host cells, double-stranded RNA (dsRNA) replication intermediates act as PAMPs, 

triggering recognition by Dicer. Dicer promptly processes these dsRNAs into small 

interfering RNAs (siRNAs), which are then incorporated into the AGO effector complex. 

Subsequently, these vsiRNAs guide the specific cleavage of the viral genome. In mammals, 

the interferon (IFN) response is considered the primary antiviral mechanism, but recent 

research has revealed that RNAi-based antiviral mechanisms also exist in mammals. The 

relationship between the IFN response and RNAi-mediated antiviral mechanisms is not yet 

fully understood. Some studies suggest that RNAi-based antiviral mechanisms serve as a 

supplementary system to the IFN response, playing a predominant role during early 

mammalian development. However, as the IFN system matures, the antiviral processes 

mediated by RNAi are suppressed. 
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Furthermore, the RNAi-based antiviral effects offer a new therapeutic approach for 

early-stage viral infections, making "siRNA vaccines" a promising possibility. Compared to 

antibody proteins, siRNA vaccines offer faster and higher specificity, theoretically capable 

of targeting all viral genomes to inhibit their replication and exerting comprehensive antiviral 

effects in the early stages of infection. However, the challenges of delivery difficulties and 

off-target effects associated with siRNA drugs need to be carefully considered. Additionally, 

further research is needed to address how to mitigate the inhibitory effects of the IFN system 

on RNAi-mediated antiviral responses in somatic cells. Further assessment is also required 

to evaluate the timing of its efficacy. 

Although studies have successfully revealed the antiviral role of vsiRNAs in mammals, 

debates and challenges persist in this field [66–68]. Firstly, this antiviral response appears to 

be inconsistent. Tsal et al. found that Influenza A virus-derived siRNAs failed to inhibit virus 

replication in human 293T cell lines, despite previous effectiveness [69]. Similarly, Schuster 

et al. observed no enhanced viral susceptibility in AGO2-knockout MEFs compared to 

controls, across three different viruses [70]. Additionally, questions remain regarding the 

adequacy of vsiRNA abundance secreted into non-infected cells for defense against virus 

invasion. While studies indicate that vsiRNAs can be secreted into the bloodstream to aid 

non-infected cells in viral defense, these findings rely on artificially purified and enriched 

vsiRNAs. Further investigation is warranted to determine whether secreted vsiRNAs can 

effectively mount an antiviral response under natural conditions, and whether insect-like 

vsiRNA amplification mechanisms exist in mammals. Moreover, the impact of the IFN 

pathway on vsiRNA production, as well as how mammalian cells balance the RNAi and IFN 

antiviral mechanisms, remain unclear. There is an urgent need for improved infection models 

to comprehensively explore the molecular characteristics and biological function 

mechanisms involved. 

In summary, the discovery of RNAi-based antiviral immunity has contributed to a better 

understanding of the mammal immune system in response to viral infection. It may act as an 

alternative antiviral mechanism in mammals when IFN pathways are immature or impaired. 
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